Functions for computing posterior cluster probabilities (get.prob) in the general GMCM as well as local and adjusted irreproducibility discovery rates (get.IDR) in the special GMCM.

get.IDR(x, par, threshold = 0.05, ...)

get.prob(x, theta, ...)

Arguments

x

A matrix of observations where rows corresponds to features and columns to studies.

par

A vector of length 4 where par[1] is mixture proportion of the irreproducible component, par[2] is the mean value, par[3] is the standard deviation, and par[4] is the correlation of the reproducible component.

threshold

The threshold level of the IDR rate.

...

Arguments passed to qgmm.marginal.

theta

A list of parameters for the full model as described in rtheta.

Value

get.IDR returns a list of length 5 with elements:

idr

A vector of the local idr values. I.e. the posterior probability that x[i, ] belongs to the irreproducible component.

IDR

A vector of the adjusted IDR values.

l

The number of reproducible features at the specified threshold.

threshold

The IDR threshold at which features are deemed reproducible.

Khat

A vector signifying whether the corresponding feature is reproducible or not.

get.prob returns a matrix where entry (i,j) is the posterior probability that the observation x[i, ] belongs to cluster j.

Note

From GMCM version 1.1 get.IDR has been an internal function. Use get.prop or get.IDR instead. The function can still be accessed with GMCM:::get.idr. get.idr returns a vector where the \(i\)'th entry is the posterior probability that observation \(i\) is irreproducible. It is a simple wrapper for get.prob.

References

Li, Q., Brown, J. B. J. B., Huang, H., & Bickel, P. J. (2011). Measuring reproducibility of high-throughput experiments. The Annals of Applied Statistics, 5(3), 1752-1779. doi:10.1214/11-AOAS466

Tewari, A., Giering, M., & Raghunathan, A. (2011). Parametric Characterization of Multimodal Distributions with Non-gaussian Modes. IEEE 11th International Conference on Data Mining Workshops, 2011, 286-292. doi:10.1109/ICDMW.2011.135

Author

Anders Ellern Bilgrau <anders.ellern.bilgrau@gmail.com>

Examples

set.seed(1123) # True parameters true.par <- c(0.9, 2, 0.7, 0.6) # Simulation of data from the GMCM model data <- SimulateGMCMData(n = 1000, par = true.par, d = 2) # Initial parameters init.par <- c(0.5, 1, 0.5, 0.9) # Nelder-Mead optimization nm.par <- fit.meta.GMCM(data$u, init.par = init.par, method = "NM")
#> Nelder-Mead direct search function minimizer #> function value for initial parameters = 171.783273 #> Scaled convergence tolerance is 2.55977e-06 #> Stepsize computed as 0.219722 #> BUILD 5 227.072307 113.692422 #> EXTENSION 7 203.422655 80.536529 #> EXTENSION 9 171.783273 0.969765 #> LO-REDUCTION 11 125.403851 0.969765 #> EXTENSION 13 113.692422 -36.695436 #> EXTENSION 15 80.536529 -59.774697 #> REFLECTION 17 2.445024 -73.341823 #> LO-REDUCTION 19 0.969765 -73.341823 #> HI-REDUCTION 21 -36.695436 -73.341823 #> LO-REDUCTION 23 -44.519612 -73.341823 #> LO-REDUCTION 25 -59.774697 -73.341823 #> REFLECTION 27 -65.323185 -75.050504 #> REFLECTION 29 -67.858104 -75.735675 #> HI-REDUCTION 31 -69.377201 -75.735675 #> EXTENSION 33 -72.263424 -85.343583 #> LO-REDUCTION 35 -73.341823 -85.343583 #> EXTENSION 37 -75.050504 -90.646223 #> EXTENSION 39 -75.735675 -95.177646 #> HI-REDUCTION 41 -82.140512 -95.177646 #> LO-REDUCTION 43 -83.887908 -95.177646 #> HI-REDUCTION 45 -85.343583 -95.177646 #> REFLECTION 47 -89.413691 -96.366569 #> REFLECTION 49 -90.646223 -96.897874 #> LO-REDUCTION 51 -94.934992 -97.221745 #> REFLECTION 53 -95.177646 -97.685118 #> EXTENSION 55 -96.366569 -100.599712 #> HI-REDUCTION 57 -96.897874 -100.599712 #> REFLECTION 59 -97.221745 -100.606776 #> LO-REDUCTION 61 -97.685118 -100.606776 #> HI-REDUCTION 63 -98.649070 -100.606776 #> REFLECTION 65 -100.128410 -101.684845 #> LO-REDUCTION 67 -100.537253 -101.684845 #> EXTENSION 69 -100.599712 -101.993131 #> EXTENSION 71 -100.606776 -102.553812 #> HI-REDUCTION 73 -100.868522 -102.553812 #> LO-REDUCTION 75 -101.559228 -102.553812 #> HI-REDUCTION 77 -101.684845 -102.553812 #> LO-REDUCTION 79 -101.993131 -102.553812 #> EXTENSION 81 -102.018479 -102.717295 #> REFLECTION 83 -102.078186 -102.809142 #> LO-REDUCTION 85 -102.373072 -102.809142 #> REFLECTION 87 -102.553812 -102.982773 #> LO-REDUCTION 89 -102.705807 -102.982773 #> LO-REDUCTION 91 -102.717295 -102.982773 #> LO-REDUCTION 93 -102.809142 -102.982773 #> HI-REDUCTION 95 -102.858857 -102.982773 #> REFLECTION 97 -102.872474 -102.988904 #> REFLECTION 99 -102.914137 -103.035337 #> EXTENSION 101 -102.966506 -103.134041 #> LO-REDUCTION 103 -102.982773 -103.134041 #> LO-REDUCTION 105 -102.988904 -103.134041 #> LO-REDUCTION 107 -103.035337 -103.138305 #> REFLECTION 109 -103.108410 -103.175415 #> HI-REDUCTION 111 -103.122287 -103.175415 #> LO-REDUCTION 113 -103.134041 -103.175415 #> REFLECTION 115 -103.138305 -103.177946 #> EXTENSION 117 -103.145600 -103.202221 #> LO-REDUCTION 119 -103.165248 -103.202221 #> REFLECTION 121 -103.175415 -103.212280 #> EXTENSION 123 -103.177946 -103.233265 #> HI-REDUCTION 125 -103.192753 -103.233265 #> LO-REDUCTION 127 -103.202221 -103.233265 #> LO-REDUCTION 129 -103.207320 -103.233265 #> LO-REDUCTION 131 -103.212280 -103.233847 #> HI-REDUCTION 133 -103.226681 -103.233847 #> LO-REDUCTION 135 -103.228143 -103.233847 #> LO-REDUCTION 137 -103.229832 -103.233847 #> REFLECTION 139 -103.232052 -103.234894 #> REFLECTION 141 -103.233265 -103.234996 #> HI-REDUCTION 143 -103.233451 -103.235265 #> REFLECTION 145 -103.233847 -103.235912 #> LO-REDUCTION 147 -103.234894 -103.235912 #> HI-REDUCTION 149 -103.234996 -103.236298 #> HI-REDUCTION 151 -103.235265 -103.236298 #> LO-REDUCTION 153 -103.235825 -103.236298 #> LO-REDUCTION 155 -103.235832 -103.236298 #> LO-REDUCTION 157 -103.235912 -103.236298 #> LO-REDUCTION 159 -103.235974 -103.236298 #> REFLECTION 161 -103.235979 -103.236437 #> HI-REDUCTION 163 -103.236126 -103.236437 #> LO-REDUCTION 165 -103.236211 -103.236437 #> LO-REDUCTION 167 -103.236249 -103.236437 #> HI-REDUCTION 169 -103.236298 -103.236437 #> EXTENSION 171 -103.236342 -103.236483 #> REFLECTION 173 -103.236347 -103.236486 #> HI-REDUCTION 175 -103.236367 -103.236486 #> LO-REDUCTION 177 -103.236433 -103.236486 #> HI-REDUCTION 179 -103.236437 -103.236486 #> LO-REDUCTION 181 -103.236453 -103.236493 #> LO-REDUCTION 183 -103.236474 -103.236494 #> LO-REDUCTION 185 -103.236483 -103.236498 #> LO-REDUCTION 187 -103.236486 -103.236498 #> LO-REDUCTION 189 -103.236493 -103.236501 #> LO-REDUCTION 191 -103.236494 -103.236501 #> HI-REDUCTION 193 -103.236495 -103.236501 #> HI-REDUCTION 195 -103.236498 -103.236501 #> HI-REDUCTION 197 -103.236498 -103.236502 #> REFLECTION 199 -103.236499 -103.236503 #> LO-REDUCTION 201 -103.236500 -103.236503 #> HI-REDUCTION 203 -103.236501 -103.236503 #> Exiting from Nelder Mead minimizer #> 205 function evaluations used
# Get IDR values res <- get.IDR(data$u, nm.par, threshold = 0.05) # Plot results plot(data$u, col = res$Khat, pch = c(3,16)[data$K])