R/dgmcm.loglik.R
, R/dgmm.loglik.R
, R/dgmm.loglik.marginal.R
, and 2 more
dgmcm.loglik.Rd
Marginal and simultaneous cumulative distribution, log probability density, and log-likelihood functions of the Gaussian mixture model (GMM) and Gaussian mixture copula model (GMCM) and the relevant inverse marginal quantile functions.
dgmcm.loglik(theta, u, marginal.loglik = FALSE, ...) dgmm.loglik(theta, z, marginal.loglik = FALSE) dgmm.loglik.marginal(theta, x, marginal.loglik = TRUE) pgmm.marginal(z, theta) qgmm.marginal(u, theta, res = 1000, spread = 5, rule = 2)
theta | A list parameters as described in |
---|---|
u | A matrix of (estimates of) realizations from the GMCM where each row corresponds to an observation. |
marginal.loglik | Logical. If |
... | Arguments passed to |
z | A matrix of realizations from the latent process where each row corresponds to an observation. |
x | A matrix where each row corresponds to an observation. |
res | The resolution at which the inversion of |
spread | The number of marginal standard deviations from the marginal
means the |
rule | The extrapolation rule used in |
The returned value depends on the value of marginal.loglik
.
If TRUE
, the non-summed marginal likelihood values are returned. If
FALSE
, the scalar sum log-likelihood is returned.
dgmcm.loglik
: As above, with the GMCM density.
dgmm.loglik
: As above, with the GMM density.
dgmm.loglik.marginal
: As above, where the j'th element is evaluated
in the j'th marginal GMM density.
pgmm.marginal
: A matrix where the (i,j)'th entry is the (i,j)'th
entry of z
evaluated in the jth marginal GMM density.
qgmm.marginal
: A matrix where the (i,j)'th entry is the (i,j)'th
entry of u
evaluated in the inverse jth marginal GMM density.
qgmm.marginal
distributes approximately res
points around the
cluster centers according to the mixture proportions in theta$pie
and
evaluates pgmm.marginal
on these points. An approximate inverse of
pgmm.marginal
function is constructed by linear interpolation of the
flipped evaluated coordinates.
Anders Ellern Bilgrau <anders.ellern.bilgrau@gmail.com>
#> theta object with d = 2 dimensions and m = 3 components: #> #> $pie #> pie1 pie2 pie3 #> 0.2193406 0.3074170 0.4732425 #> #> $mu #> $mu$comp1 #> [1] 13.29799 12.72429 #> #> $mu$comp2 #> [1] 4.146414 -15.399500 #> #> $mu$comp3 #> [1] -9.285670 -2.947204 #> #> #> $sigma #> $sigma$comp1 #> [,1] [,2] #> [1,] 13.348429 8.850678 #> [2,] 8.850678 5.934935 #> #> $sigma$comp2 #> [,1] [,2] #> [1,] 3.0665824 -0.3895294 #> [2,] -0.3895294 2.6192252 #> #> $sigma$comp3 #> [,1] [,2] #> [1,] 1.9840226 0.4433423 #> [2,] 0.4433423 2.8292856 #> #>GMCM:::dgmcm.loglik(theta, u, marginal.loglik = FALSE)#> [1] 13.59121GMCM:::dgmcm.loglik(theta, u, marginal.loglik = TRUE)#> [,1] #> [1,] 3.7357739 #> [2,] 0.8021746 #> [3,] 0.2719414 #> [4,] 0.8672774 #> [5,] 0.6881781 #> [6,] 0.8119559 #> [7,] 1.1731392 #> [8,] 0.9476444 #> [9,] 0.7314841 #> [10,] 3.5616420GMCM:::dgmm.loglik(theta, z, marginal.loglik = FALSE)#> [,1] #> [1,] -43.74253GMCM:::dgmm.loglik(theta, z, marginal.loglik = TRUE)#> [,1] #> [1,] -3.653635 #> [2,] -4.037537 #> [3,] -6.198597 #> [4,] -4.256785 #> [5,] -3.879436 #> [6,] -3.802766 #> [7,] -4.805304 #> [8,] -5.308502 #> [9,] -4.146636 #> [10,] -3.653327GMCM:::dgmm.loglik.marginal(theta, z, marginal.loglik = FALSE)#> [,1] [,2] #> [1,] -28.94221 -28.39174GMCM:::dgmm.loglik.marginal(theta, z, marginal.loglik = TRUE)#> [,1] [,2] #> [1,] -3.878353 -3.511683 #> [2,] -2.048666 -2.791043 #> [3,] -3.554761 -2.915783 #> [4,] -2.166867 -2.957184 #> [5,] -2.112156 -2.455467 #> [6,] -2.355797 -2.258921 #> [7,] -3.228134 -2.750316 #> [8,] -3.082020 -3.174180 #> [9,] -2.690093 -2.188029 #> [10,] -3.825364 -3.389137GMCM:::pgmm.marginal(z, theta)#> [,1] [,2] #> [1,] 0.84505432 0.84019072 #> [2,] 0.18455949 0.37171423 #> [3,] 0.45460398 0.36120747 #> [4,] 0.33718720 0.72988747 #> [5,] 0.15397511 0.67091502 #> [6,] 0.09592262 0.47416290 #> [7,] 0.74791295 0.08598483 #> [8,] 0.73595788 0.26505301 #> [9,] 0.05758476 0.55218465 #> [10,] 0.85356669 0.85999327GMCM:::qgmm.marginal(u, theta)#> [,1] [,2] #> [1,] 11.314478 11.2413720 #> [2,] -9.679158 -4.7958888 #> [3,] -6.809556 -4.9778080 #> [4,] -8.495785 -0.8596063 #> [5,] -9.923474 -1.7148287 #> [6,] -10.457700 -3.5847277 #> [7,] 6.163773 -16.3443181 #> [8,] 5.884038 -13.6349242 #> [9,] -10.928869 -2.8746333 #> [10,] 11.714836 11.8618236