Compute goodness of fit as described in AIC
. The number of
parameters used correspond to the number of variables free to vary in the
general model.
goodness.of.fit(theta, u, method = c("AIC", "BIC"), k = 2)
theta | A |
---|---|
u | An |
method | A |
k | A integer specifying the default used constant "k" in AIC. See
|
A single number giving the goodness of fit as requested.
set.seed(2) data(u133VsExon) u <- Uhat(u133VsExon[sample(19577, 500), ]) # Subset for faster fitting theta1 <- fit.full.GMCM(u, m = 2, method = "L-BFGS")#> iter 10 value -110.257470 #> iter 20 value -110.738198 #> final value -110.874731 #> convergedgoodness.of.fit(theta1, u) # AIC#> [1] -205.7495goodness.of.fit(theta1, u, method = "BIC")#> [1] -172.0326if (FALSE) { theta2 <- fit.full.GMCM(u, m = 3, method = "L-BFGS") goodness.of.fit(theta2, u) goodness.of.fit(theta2, u, method = "BIC") }