These functions converts/coerces the parameters between the general Gaussian
mixture (copula) model and the special GMCM.
Most functions of the GMCM packages use the theta
format described in rtheta
.
full2meta(theta) meta2full(par, d)
theta | A list of parameters for the full model. Formatted as described
in |
---|---|
par | A vector of length 4 where |
d | An integer giving the dimension of the mixture distribution. |
full2meta
returns a numeric vector of length 4 formatted as
par
.
meta2full returns a formatted 'theta' list of parameters as described
by rtheta
.
If a theta
is supplied which is not on the form of Li et. al. (2011)
the output is coerced by simply picking the first element of the second
component mean vector as mean,
the square roof of the first diagonal entry of the second component
covariance matrix as standard deviation, and first off-diagonal entry as
correlation (properly scaled).
Li, Q., Brown, J. B. J. B., Huang, H., & Bickel, P. J. (2011). Measuring reproducibility of high-throughput experiments. The Annals of Applied Statistics, 5(3), 1752-1779. doi:10.1214/11-AOAS466
Tewari, A., Giering, M., & Raghunathan, A. (2011). Parametric Characterization of Multimodal Distributions with Non-gaussian Modes. IEEE 11th International Conference on Data Mining Workshops, 2011, 286-292. doi:10.1109/ICDMW.2011.135
Anders Ellern Bilgrau <anders.ellern.bilgrau@gmail.com>
#> pie1 mu sigma rho #> 0.09074447 10.27417079 2.40060596 -0.00726274#> theta object with d = 2 dimensions and m = 2 components: #> #> $pie #> pie1 pie2 #> 0.09074447 0.90925553 #> #> $mu #> $mu$comp1 #> [1] 0 0 #> #> $mu$comp2 #> mu mu #> 10.27417 10.27417 #> #> #> $sigma #> $sigma$comp1 #> [,1] [,2] #> [1,] 1 0 #> [2,] 0 1 #> #> $sigma$comp2 #> [,1] [,2] #> [1,] 5.76290897 -0.04185451 #> [2,] -0.04185451 5.76290897 #> #>